Autopsy and Case Reports
https://autopsyandcasereports.org/article/doi/10.4322/acr.2024.512
Autopsy and Case Reports
Short Communication

COVID-19 shed light on Virchow’s law of thrombosis

Hubert Daisley; Oneka Acco; Martina Daisley; Dennecia George; Lilly Paul; Arlene Rampersad; Johann Daisley

Downloads: 0
Views: 154

Abstract

Virchow’s law of thrombosis states that thrombosis in a vessel occurs as a combination of the following: (i) injury to the vessel wall, (ii) stasis of blood flow, and (iii) blood hypercoagulability. Injury to the wall includes infection/inflammation and/or injury to the resident cells of the wall. We postulate that in COVID-19, the SARS-CoV-2 virus directly infects the alveolar type II cell or directly or indirectly infects/injures the pericyte, promoting inflammation and interaction with endothelial cells, thereby causing a cascade of events leading to our observation that thrombosis occurred within the walls of the pulmonary vessels and not in the lumen of the vascular circulation.

Keywords

Blood vessels, COVID-19, Thrombosis

References

1 Kumar DR, Hanlin E, Glurich I, Mazza JJ, Yale SH. Virchow’s contribution to the understanding of thrombosis and cellular biology. Clin Med Res. 2010;8(3-4):168-72. http://doi.org/10.3121/cmr.2009.866. PMid:20739582.

2 Kushner A, West WP, Khan Suheb MZ, et al. Virchow Triad. [Updated 2022 Dec 10]. In: StatPearls Publishing. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Jun 3]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539697/

3 Daisley H Jr, Rampersad A, Daisley M, et al. COVID-19: a closer look at the pathology in two autopsied cases. Is the pericyte at the center of the pathological process in COVID-19? Autops Case Rep. 2021;11:e2021262. http://doi.org/10.4322/acr.2021.262. PMid:34307223.

4 Daisley H, Acco O, Daisley M, et al. Thrombosis of the vasa vasorum of the large and medium size pulmonary artery and vein leads to pulmonary thromboembolism in COVID-19. Autops Case Rep. 2024;14:e2024491. http://doi.org/10.4322/acr.2024.491. PMid:38803482.

5 Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. http://doi.org/10.14814/phy2.14726. PMid:33523608.

6 Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193-215. http://doi.org/10.1016/j.devcel.2011.07.001. PMid:21839917.

7 Geevarghese A, Herman IM. Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl Res. 2014;163(4):296-306. http://doi.org/10.1016/j.trsl.2014.01.011. PMid:24530608.

8 Madureira G, Soares R. The misunderstood link between SARS-CoV-2 and angiogenesis. A narrative review. Pulmonology. 2023;29(4):323-31. http://doi.org/10.1016/j.pulmoe.2021.08.004. PMid:34593362.

9 Yuan K, Agarwal S, Chakraborty A, et al. Lung pericytes in pulmonary vascular physiology and pathophysiology. Compr Physiol. 2021;11(3):2227-47. http://doi.org/10.1002/cphy.c200027. PMid:34190345.

10 McQuaid C, Montagne A. SARS-CoV-2 and vascular dysfunction: a growing role for pericytes. Cardiovasc Res. 2023;119(16):2591-3. http://doi.org/10.1093/cvr/cvac143. PMid:36063106.

11 Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111(11):5271-81. http://doi.org/10.1182/blood-2008-01-078204. PMid:18502843.

12 Valentijn KM, Sadler JE, Valentijn JA, Voorberg J, Eikenboom J. Functional architecture of Weibel-Palade bodies. Blood. 2011;117(19):5033-43. http://doi.org/10.1182/blood-2010-09-267492. PMid:21266719.

13 Khan AO, Reyat JS, Hill H, et al. Preferential uptake of SARS-CoV-2 by pericytes potentiates vascular damage and permeability in an organoid model of the microvasculature. Cardiovasc Res. 2022;118(15):3085-96. http://doi.org/10.1093/cvr/cvac097. PMid:35709328.

14 Nicosia RF, Ligresti G, Caporarello N, Akilesh S, Ribatti D. COVID-19 vasculopathy: mounting evidence for an indirect mechanism of endothelial injury. Am J Pathol. 2021;191(8):1374-84. http://doi.org/10.1016/j.ajpath.2021.05.007. PMid:34033751.

15 Rayner SG, Hung CF, Liles WC, Altemeier WA. Lung pericytes as mediators of inflammation. Am J Physiol Lung Cell Mol Physiol. 2023;325(1):L1-8. http://doi.org/10.1152/ajplung.00354.2022. PMid:37130806.

16 Butsabong T, Felippe M, Campagnolo P, Maringer K. The emerging role of perivascular cells (pericytes) in viral pathogenesis. J Gen Virol. 2021;102(8):001634. http://doi.org/10.1099/jgv.0.001634. PMid:34424156.

17 Duca ŞT, Costache AD, Miftode RŞ, Mitu O, Petri ŞAO, Costache II. Hypercoagulability in COVID-19: from an unknown beginning to future therapies. Med Pharm Rep. 2022;95(3):236-42. http://doi.org/10.15386/mpr-2195. PMid:36060499.

18 Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res. 2020;194:101-15. http://doi.org/10.1016/j.thromres.2020.06.029. PMid:32788101.

19 Lasagni A, Cadamuro M, Radu CM, et al. SARS-CoV-2 induces pericyte procoagulant response associated with portal vein microthrombosis and intrapulmonary vascular dilations in fatal COVID-19. J Hepatol. 2022;77:S751. http://doi.org/10.1016/S0168-8278(22)01819-0.

20 Kangro K, Wolberg AS, Flick MJ. Fibrinogen, fibrin, and fibrin degradation products in COVID-19. Curr Drug Targets. 2022;23(17):1593-602. http://doi.org/10.2174/1389450123666220826162900. PMid:36029073.

21 Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575-82. http://doi.org/10.1016/S2352-3026(20)30216-7. PMid:32619411.

22 Bastin A, Abbasi F, Roustaei N, et al. Severity of oxidative stress as a hallmark in COVID-19 patients. Eur J Med Res. 2023;28(1):558. http://doi.org/10.1186/s40001-023-01401-2. PMid:38049886.

23 Vollbracht C, Kraft K. Oxidative stress and hyper-inflammation as major drivers of severe COVID-19 and long COVID: implications for the benefit of high-dose intravenous vitamin C. Front Pharmacol. 2022;13:899198. http://doi.org/10.3389/fphar.2022.899198. PMid:35571085.

24 Andreeva ER, Pugach IM, Gordon D, Orekhov AN. Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell. 1998;30(1):127-35. http://doi.org/10.1016/S0040-8166(98)80014-1. PMid:9569686.

25 Juchem G, Weiss DR, Gansera B, Kemkes BM, Mueller-Hoecker J, Nees S. Pericytes in the macrovascular intima: possible physiological and pathogenetic impact. Am J Physiol Heart Circ Physiol. 2010;298(3):H754-70. http://doi.org/10.1152/ajpheart.00343.2009. PMid:20023125.

26 Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM. Vascular cells in blood vessel wall development and disease. Adv Pharmacol. 2017;78:323-50. http://doi.org/10.1016/bs.apha.2016.08.001. PMid:28212800.

27 Billaud M, Donnenberg VS, Ellis BW, et al. Classification and functional characterization of vasa vasorum-associated perivascular progenitor cells in human aorta. Stem Cell Reports. 2017;9(1):292-303. http://doi.org/10.1016/j.stemcr.2017.04.028. PMid:28552602.

28 Dore-Duffy P, Cleary K. Morphology, and properties of pericytes. Methods Mol Biol. 2011;686:49-68. http://doi.org/10.1007/978-1-60761-938-3_2. PMid:21082366.

29 Ahmed TA, El-Badri N. Pericytes: the role of multipotent stem cells in vascular maintenance and regenerative Medicine. Adv Exp Med Biol. 2018;1079:69-86. http://doi.org/10.1007/5584_2017_138. PMid:29282647.

30 Brotman DJ, Deitcher SR, Lip GY, Matzdorff AC. Virchow’s triad revisited. South Med J. 2004;97(2):213-4. http://doi.org/10.1097/01.SMJ.0000105663.01648.25. PMid:14982286.

31 Li P, Fan H. Pericyte loss in diseases. Cells. 2023;12(15):1931. http://doi.org/10.3390/cells12151931. PMid:37566011.

32 Cardot-Leccia N, Hubiche T, Dellamonica J, Burel-Vandenbos F, Passeron T. Pericyte alteration sheds light on micro-vasculopathy in COVID-19 infection. Intensive Care Med. 2020;46(9):1777-8. http://doi.org/10.1007/s00134-020-06147-7. PMid:32533198.

33 Muhl L, He L, Sun Y, et al. The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: implications for COVID-19 vascular research. Stem Cell Reports. 2022;17(5):1089-104. http://doi.org/10.1016/j.stemcr.2022.03.016. PMid:35452595.

34 Wang P, Luo R, Zhang M, et al. A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection. Cell Death Dis. 2020;11(12):1042. http://doi.org/10.1038/s41419-020-03252-9. PMid:33293527.

35 Perico L, Morigi M, Pezzotta A, et al. SARS-CoV-2 spike protein induces lung endothelial cell dysfunction and thrombo-inflammation depending on the C3a/C3a receptor signalling. Sci Rep. 2023;13(1):11392. http://doi.org/10.1038/s41598-023-38382-5. PMid:37452090.
 


Submitted date:
06/03/2024

Accepted date:
07/15/2024

Publication date:
08/28/2024

66cf2b8ea953957db3719544 autopsy Articles
Links & Downloads

Autops Case Rep

Share this page
Page Sections