Autopsy and Case Reports
https://autopsyandcasereports.org/article/doi/10.4322/acr.2020.157
Autopsy and Case Reports
Article / Autopsy Case Report

Autopsy of a child with Spinal muscular atrophy Type I (Werdnig-Hoffmann disease)

Manoj Gopal Madakshira; Sonal Singla; Kirti Gupta; Sayeeda Zahan; Pradip Paria; Jitendra Kumar Sahu

Downloads: 1
Views: 161

Abstract

Spinal muscular atrophy (SMA) is a heritable neuromuscular disorder which encompasses a large group of genetic disorders characterized by slowly progressive degeneration of lower motor neurons. The mutation is seen in the SMN1 gene mapped on chromosome 5. Depending on the age of the onset and the degree of severity, SMA has three subtypes. We discuss the autopsy findings in a case of Type 1 SMA also known by the name Werdnig-Hoffmann disease, to highlight the primary changes in the spinal cord, and skeletal muscle with association changes in the liver and terminal respiratory complications.

Keywords

Gliosis, microvesicular steatosis, neurogenic atrophy, spinal muscular atrophy type I

References

Lunn MR, Wang CH. Spinal muscular atrophy. Lancet. 2008;371(9630):2120-33. [https://doi.org/10.1016/S0140-6736(08)60921-6]. [PMID:18572081]

Coovert DD, Le TT, McAndrew PE, et al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet. 1997;6(8):1205-14. [https://doi.org/10.1093/hmg/6.8.1205]. [PMID:9259265]

Hsieh-Li HM, Chang JG, Jong YJ, et al. A mouse model for spinal muscular atrophy. Nat Genet. 2000;24(1):66-70. [https://doi.org/10.1038/71709]. [PMID:10615130]

Verhaart IE, Robertson A, Wilson IJ, et al. Prevalence, incidence and carrier frequency of 5q–linked spinal muscular atrophy: a literature review. Orphanet J Rare Dis. 2017;12(1):124. [https://doi.org/10.1186/s13023-017-0671-8]. [PMID:28676062]

Oskoui M, Levy G, Garland CJ, et al. The changing natural history of spinal muscular atrophy type 1. Neurology. 2007;69(20):1931-6. [https://doi.org/10.1212/01.wnl.0000290830.40544.b9]. [PMID:17998484]

Zerres K, Wirth B, Rudnik-Schöneborn S. Spinal muscular atrophy: clinical and genetic correlations. Neuromuscul Disord. 1997;7(3):202-7. [https://doi.org/10.1016/S0960-8966(97)00459-8]. [PMID:9185186]

Ioos C, Leclair-Richard D, Mrad S, Barois A, Estournet-Mathiaud B. Respiratory capacity course in patients with infantile spinal muscular atrophy. Chest. 2004;126(3):831-7. [https://doi.org/10.1378/chest.126.3.831]. [PMID:15364763]

Birnkrant DJ, Pope JF, Martin JE, Repucci AH, Eiben RM. Treatment of type I spinal muscular atrophy with noninvasive ventilation and gastrostomy feeding. Pediatr Neurol. 1998;18(5):407-10. [https://doi.org/10.1016/S0887-8994(97)00227-0]. [PMID:9650680]

Powis RA, Gillingwater TH. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy. J Anat. 2016;228(3):443-51. [https://doi.org/10.1111/joa.12419]. [PMID:26576026]

Johnson MA, Sideri G, Weightman D, Appleton D. A comparison of fibre size, fibre type constitution and spatial fibre type distribution in normal human muscle and in muscle from cases of spinal muscular atrophy and from other neuromuscular disorders. J Neurol Sci. 1973;20(4):345-61. [https://doi.org/10.1016/0022-510X(73)90169-X]. [PMID:4272515]

Oskoui M, Darras B, De Vivo D. Spinal muscular atrophy: 125 years later and on the verge of a cure. In: Sumner CJ, Paushkin S, Ko CP, editors. Spinal muscular atrophy. London: Elsevier; 2017. p. 3-19. [https://doi.org/10.1016/B978-0-12-803685-3.00001-X].

Lefebvre S, Bürglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155-65. [https://doi.org/10.1016/0092-8674(95)90460-3]. [PMID:7813012]

Mailman MD, Heinz JW, Papp AC, et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med. 2002;4(1):20-6. [https://doi.org/10.1097/00125817-200201000-00004]. [PMID:11839954]

Medrano S, Monges S, Gravina LP, et al. Genotype–phenotype correlation of SMN locus genes in spinal muscular atrophy children from Argentina. Eur J Paediatr Neurol. 2016;20(6):910-7. [https://doi.org/10.1016/j.ejpn.2016.07.017]. [PMID:27510309]

Crawford TO, Sladky JT, Hurko O, Besner-Johnston A, Kelley RI. Abnormal fatty acid metabolism in childhood spinal muscular atrophy. Ann Neurol. 1999;45(3):337-43. [https://doi.org/10.1002/1531-8249(199903)45:3<337::AID-ANA9>3.0.CO;2-U]. [PMID:10072048]

Hanson PA, Urizar R. Ultrastructural lesions of muscle and immunofluorescent deposits in vessels in Reye’s syndrome: a preliminary report of serial muscle biopsies. Ann Neurol. 1977;1(5):431-7. [https://doi.org/10.1002/ana.410010506]. [PMID:363044]

Shababi M, Lorson CL, Rudnik‐Schöneborn SS. Spinal muscular atrophy: a motor neuron disorder or a multi‐organ disease? J Anat. 2014;224(1):15-28. [https://doi.org/10.1111/joa.12083]. [PMID:23876144]

 

 

 


Publication date:
04/23/2020

5ea1cd0a0e8825867791d3be autopsy Articles
Links & Downloads

Autops Case Rep

Share this page
Page Sections